Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

Theory of Complex Variables - MA 209
 Problem Sheet-6
 Complex Integration

1. Evaluate the the given integral along the indicated contour.
(a) $\int_{C} \frac{z+1}{z} d z$ where C is the right half of the circle $|z|=1$ from $z=-i$ to $z=i$
(b) $\int_{C} \operatorname{Re}(z) d z$ where C is the circle $|z|=1$
(c) $\int_{C} x^{2}+i y^{3} d z$ where C is the straight line from $z=1$ to $z=i$
(d) $\int_{C} x^{2}-i y^{3} d z$ where C is the lower half of the circle $|z|=1$ from $z=-1$ to $z=1$
2. Find an upper bound for the absolute value of the given integral along the indicated contour. $\int_{C} \frac{e^{2}}{z^{2}+1} d z$ where C the circle $|z|=5$
3. Show that $\int_{C} f(z) d z=0$ for the following f ; C is the unit circle $|z|=1$
(a) $f(z)=z^{2}+\frac{1}{z-4}$
(c) $f(z)=\frac{e^{z}}{2 z^{2}+11 z+15}$
(b) $f(z)=\frac{z-3}{z^{2}+2 z+2}$
4. Evaluate the integral $\int_{C}\left(\frac{e^{z}}{z+3}-3 \bar{z}\right) d z$ where C the circle $|z|=1$
5. Suppose z_{0} is any constant complex number inside to any simple closed curve C. Show that for a positive integer $n>1, \int_{C} \frac{1}{\left(z-z_{0}\right)^{n}} d z=0$
6. Evaluate $\int_{C}\left(z^{3}++z^{2}+\operatorname{Re}(z)\right) d z$ where C the triangle with the vertices $0,1+2 i$ and 1 .
7. Describe contours C for which we are guaranteed that $\int_{C} f(z) d z=0$ for each of the following functions
(a) $f(z)=\frac{1}{z^{3}+z}$
(c) $f(z)=\operatorname{Ln}(z)$
(b) $f(z)=\frac{1}{1-e^{z}}$
8. Evaluate the given integral along the indicated contours.
(a) $\int_{C} \frac{4}{z-3 i} d z:|z|=5$
(d) $\int_{C} \frac{z^{2}-3 z+4 i}{z+2 i} d z:|z|=3$
(b) $\int_{C} \frac{e^{z}}{z-\pi i} d z:|z|=4$
(c) $\int_{C} \frac{1+e^{z}}{z} d z:|z|=1$
9. Evaluate the following integrals
(a) $\int_{\mathrm{C}} \frac{1}{z} d z$ where C is the arc of the circle $z=4 e^{i t} \frac{-\pi}{2} \leq t \leq \frac{\pi}{2}$
(b) $\int_{C} \frac{1}{z} d z$ where C is the line segment from $1+i$ to $4+4 i$
10. Evaluate the integral $\int_{C} \operatorname{Im}(z-i) d z$ where C is the polygonal path consisting of the circular arc along $|z|=1$ from $z=1$ to $z=i$ and the line segment from $z=i$ to $z=-1$
